1000字范文,内容丰富有趣,学习的好帮手!
1000字范文 > 伽罗瓦理论(2)

伽罗瓦理论(2)

时间:2024-04-29 05:52:46

相关推荐

伽罗瓦理论(2)

目录

正规扩张,可分扩张伽罗瓦群,伽罗瓦扩张群的阶和扩张次数的关系伽罗瓦扩张的等价刻画

伽罗瓦理论(1)

伽罗瓦理论(3)

伽罗瓦理论(4)

接着上次的内容,把多项式的分裂域和重根概念通过代数元的极小多项式推广到扩域上面。

正规扩张,可分扩张

假设大域是代数扩张,即任何元素都有极小多项式。如果大域中的每个元素的极小多项式在大域中分裂,则称大域为正规扩张。如果大域中的每个元素的极小多项式没有重根,则称大域为可分扩张

还是看个例子。

Q[2,3]⊃Q\mathbb{Q}[\sqrt{2},\sqrt{3}]\supset\mathbb{Q}Q[2​,3​]⊃Q为正规扩张,也是可分扩张

伽罗瓦群,伽罗瓦扩张

大域EEE上的FFF-自同构,称为伽罗瓦群,记作Gal(E/F)Gal(E/F)Gal(E/F)。如果是有限扩张,并且小域恰好是大域在伽罗瓦群下的不动点全体,即F=EGal(E/F)F=E^{Gal(E/F)}F=EGal(E/F),则称为伽罗瓦扩张

E=Q[2,3]⊃QE=\mathbb{Q}[\sqrt{2},\sqrt{3}]\supset\mathbb{Q}E=Q[2​,3​]⊃Q为伽罗瓦扩张,Gal(E/Q)={id,2↦σ−2,3↦τ−3,στ}≃Z2×Z2Gal(E/\mathbb{Q})=\{id, \sqrt{2}\xmapsto{\sigma}-\sqrt{2},\sqrt{3}\xmapsto{\tau}-\sqrt{3},\sigma\tau\}\simeq \mathbb{Z}_2\times\mathbb{Z}_2Gal(E/Q)={id,2​σ​−2​,3​τ​−3​,στ}≃Z2​×Z2​。并且,Q=EGal(E/Q)\mathbb{Q}=E^{Gal(E/\mathbb{Q})}Q=EGal(E/Q)。

到现在,算是把基本的概念全部说完了。但是概念之间的关系还没有讲清楚。分裂域,正规扩张和可分扩张,伽罗瓦扩张,分别是从三个不同的角度刻画扩域,一个是多项式的根,一个是元素性质,一个是对称性。它们之间有怎样的联系呢?我们先从两个数值不变量入手。

(这里,我想可以和黎曼曲面的理论联系起来。代数曲面,Galois覆叠,关于Deck群的商空间。)

群的阶和扩张次数的关系

分裂域的伽罗瓦群一定是有限群,并且群的阶不超过扩张次数,这在前面分裂域的部分已经讲过。反过来,扩域在有限子群的不变子域上的扩张次数一定不超过群的阶。

定理(有限群的不变子域)如果有限群G⊂Aut(E)G\subset Aut(E)G⊂Aut(E),则

[E:EG]≤∣G∣[E: E^{G}]\le |G|[E:EG]≤∣G∣

证明设G={σ1=id,σ2,⋯,σn}G=\{\sigma_1=id, \sigma_2,\cdots,\sigma_n \}G={σ1​=id,σ2​,⋯,σn​}. EEE中m>nm>nm>n个元素x1,⋯,xmx_1,\cdots, x_mx1​,⋯,xm​,考虑方程组

σ1(x1)c1+⋯+σ1(xm)cm=0\sigma_1(x_1)c_1+\cdots + \sigma_1(x_m)c_m=0σ1​(x1​)c1​+⋯+σ1​(xm​)cm​=0

σ2(x1)c1+⋯+σ2(xm)cm=0\sigma_2(x_1)c_1+\cdots + \sigma_2(x_m)c_m=0σ2​(x1​)c1​+⋯+σ2​(xm​)cm​=0

⋯\cdots⋯

σn(x1)c1+⋯+σn(xm)cm=0\sigma_n(x_1)c_1+\cdots + \sigma_n(x_m)c_m=0σn​(x1​)c1​+⋯+σn​(xm​)cm​=0

未知数的个数大于方程的个数,所以在EEE上必有非零解,调换cic_ici​的位置可以设c1≠0c_1\neq 0c1​​=0,两边再同时乘以c1−1c_1^{-1}c1−1​的话可以设c1=1∈EGc_1=1\in E^Gc1​=1∈EG. 这种正规化操作是不改变解中非零元的个数的,假设c1=1,c2,⋯,cnc_1=1, c_2, \cdots, c_nc1​=1,c2​,⋯,cn​为所有非零解中包含最少非零元的一个解。下面证明此时必有ci∈EG,c_i\in E^G,ci​∈EG,对于所有的iii.

假设存在cj∉EGc_j\not\in E^Gcj​​∈EG,于是存在k,σk(cj)≠cj.k,\sigma_k(c_j)\neq c_j.k,σk​(cj​)​=cj​.对上面的方程组两边使用σk\sigma_kσk​作用,得到一个新的解σk(ci),i=1,2,⋯,m.\sigma_k(c_i),i=1,2,\cdots,m.σk​(ci​),i=1,2,⋯,m.两个解做差得到又一个解

(0,⋯,cj−σk(cj),⋯)(0, \cdots,c_j-\sigma_k(c_j),\cdots)(0,⋯,cj​−σk​(cj​),⋯)

因为原来的零经过变换做差后还是零,所以这个解含有更少的非零元,与假设矛盾,得证。

伽罗瓦扩张的等价刻画

伽罗瓦扩张,用抽象而全局的对称性来刻画一类有限扩域,往往难以进行具体验证和进一步的逻辑演绎。所以需要其他更为具体和更为局部的刻画。前者我们借助分类域,后者我们借助正规扩张和可分扩张。

定理(伽罗瓦扩张)对于域扩张E/FE/FE/F,以下命题等价:

EEE是FFF上某个可分多项式的分裂域此扩张是伽罗瓦扩张存在某个有限群G⊂Aut(E)G\subset Aut(E)G⊂Aut(E)使得F=EGF=E^GF=EG此扩张是有限的,正规的,可分的

这个定理的理解很重要。如何从1到2?分裂域自然是有限扩张。设G=Gal(E/F)G=Gal(E/F)G=Gal(E/F),下面证明EG=F.E^G=F.EG=F.在分裂域的定义部分证明了∣G∣=[E:F]|G|= [E:F]∣G∣=[E:F].因为F⊂EGF\subset E^GF⊂EG,所以Gal(E/EG)⊂Gal(E/F)=GGal(E/E^G)\subset Gal(E/F)=GGal(E/EG)⊂Gal(E/F)=G,又显然有G⊂Gal(E/EG)G\subset Gal(E/E^G)G⊂Gal(E/EG),因此G=Gal(E/EG).G=Gal(E/E^G).G=Gal(E/EG).注意到EEE也是EGE^GEG上某个可分多项式的分裂域,∣Gal(E/EG)∣=[E:EG]|Gal(E/E^G)|=[E:E^G]∣Gal(E/EG)∣=[E:EG],从而EG=F.E^G=F.EG=F.

接下来,从2到3. 令G=Gal(E/F)G=Gal(E/F)G=Gal(E/F),下面说明这个群是有限群。因为是有限扩张,可以设E⊂E′E\subset E^{\prime}E⊂E′,其中E′E^{\prime}E′为FFF上某个多项式的分裂域。于是Gal(E′/F)Gal(E^{\prime}/F)Gal(E′/F)是有限群。但是,E′E^{\prime}E′也是EEE上某个多项式的分裂域,于是任何EEE的自同构一定可以扩充为E′E^{\prime}E′的自同构,从而G⊂Gal(E′/F)G\subset Gal(E^{\prime}/F)G⊂Gal(E′/F),因而也是有限群。

再看从3到4. 根据上面的引理,有[E:F]≤∣G∣[E:F]\leq |G|[E:F]≤∣G∣,于是扩张是有限的。对于a∈E−Fa\in E-Fa∈E−F,极小多项式为f(x)∈F[x]f(x)\in F[x]f(x)∈F[x]. 设G={σ1=id,⋯,σn}G=\{\sigma_1=id,\cdots, \sigma_n\}G={σ1​=id,⋯,σn​},令g(x)=∏i=1n(x−σi(a))g(x)=\prod_{i=1}^{n}(x-\sigma_i(a))g(x)=∏i=1n​(x−σi​(a)).因为g(x)g(x)g(x)的系数在GGG下不变,所以是F[x]F[x]F[x]上的多项式,于是f(x)∣g(x)f(x)|g(x)f(x)∣g(x),从而f(x)f(x)f(x)的其他根也都在EEE中,从而EEE是正规扩张。设aaa在GGG作用下的轨道为{a1=a,⋯,am=a}\{a_1=a, \cdots, a_m=a\}{a1​=a,⋯,am​=a},设h(x)=∏j=1m(x−aj)h(x)=\prod_{j=1}^{m}(x-a_j)h(x)=∏j=1m​(x−aj​),使用σi\sigma_iσi​作用到多项式h(x)h(x)h(x)上,因为Ga=σiGaGa=\sigma_iGaGa=σi​Ga,所以h(x)∈F[x]h(x)\in F[x]h(x)∈F[x],从而f(x)∣h(x)f(x)|h(x)f(x)∣h(x),立即有f(x)f(x)f(x)为可分多项式,因此EEE是可分扩张。

最后看从4到1.这一步就很容易了。因为EEE为有限扩张,可以设E=F[α1,⋯,αn]E=F[\alpha_1,\cdots, \alpha_n]E=F[α1​,⋯,αn​],αi\alpha_iαi​的极小多项式为fi(x)∈F[x].f_i(x)\in F[x].fi​(x)∈F[x]. 如果fi,fjf_i,f_jfi​,fj​有共同根,因为不可约,则必有fi=fj.f_i=f_j.fi​=fj​.设fff为fif_ifi​中所有互异多项式的乘积,由于EEE正规可分,EEE是可分多项式fff的分裂域。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。
相关阅读
伽罗瓦理论

伽罗瓦理论

2023-03-10

伽罗瓦理论(4)

伽罗瓦理论(4)

2019-06-29

伽罗瓦理论笔记暂记1

伽罗瓦理论笔记暂记1

2020-04-24

伽罗瓦理论笔记暂记2

伽罗瓦理论笔记暂记2

2021-05-10

扩展阅读