1000字范文,内容丰富有趣,学习的好帮手!
1000字范文 > (pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

时间:2018-09-23 04:05:25

相关推荐

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet

先上图:LeNet的网络结构

卷积(6个5∗5的核)→降采样(池化)(2∗2的核,步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核,步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10\begin{matrix}卷积 \\ (6个5*5的核) \end{matrix} \rightarrow \begin{matrix}降采样(池化) \\ (2*2的核,步长2) \end{matrix}\rightarrow \begin{matrix}卷积 \\ (16个5*5的核) \end{matrix} \rightarrow \begin{matrix}降采样(池化) \\ (2*2的核,步长2)\end{matrix}\rightarrow \\ \\ \begin{matrix}全连接 \\ 16*5*5\rightarrow120\end{matrix}\rightarrow \begin{matrix}全连接 \\ 120\rightarrow84\end{matrix}\rightarrow \begin{matrix}全连接 \\ 84\rightarrow10\end{matrix} 卷积(6个5∗5的核)​→降采样(池化)(2∗2的核,步长2)​→卷积(16个5∗5的核)​→降采样(池化)(2∗2的核,步长2)​→全连接16∗5∗5→120​→全连接120→84​→全连接84→10​

LeNet分为卷积层块和全连接层块两个部分。

卷积层

卷积层块里的基本单位是卷积层后接最大池化层

卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。

在卷积层块中,每个卷积层都使用5×55\times 55×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。卷积层块的两个最大池化层的窗口形状均为2×22\times 22×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

全连接层

卷积层块的输出形状为(批量大小, 通道, 高, 宽)

当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维

其中第一维是小批量中的样本第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积

全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

实现模型

下面通过Sequential类来实现LeNet模型。

import timeimport torchfrom torch import nn, optimdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv = nn.Sequential(nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_sizenn.Sigmoid(),nn.MaxPool2d(2, 2), # kernel_size, stridenn.Conv2d(6, 16, 5),nn.Sigmoid(),nn.MaxPool2d(2, 2))self.fc = nn.Sequential(nn.Linear(16*4*4, 120),nn.Sigmoid(),nn.Linear(120, 84),nn.Sigmoid(),nn.Linear(84, 10))def forward(self, img):feature = self.conv(img)output = self.fc(feature.view(img.shape[0], -1))return output

net = LeNet()print(net)

LeNet((conv): Sequential((0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))(1): Sigmoid()(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(4): Sigmoid()(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(fc): Sequential((0): Linear(in_features=256, out_features=120, bias=True)(1): Sigmoid()(2): Linear(in_features=120, out_features=84, bias=True)(3): Sigmoid()(4): Linear(in_features=84, out_features=10, bias=True)))

获取数据集

def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):"""Download the fashion mnist dataset and then load into memory."""trans = []if resize:trans.append(torchvision.transforms.Resize(size=resize))trans.append(torchvision.transforms.ToTensor())transform = pose(trans)mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)if sys.platform.startswith('win'):num_workers = 0 # 0表示不用额外的进程来加速读取数据else:num_workers = 4train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)return train_iter, test_iterbatch_size = 256train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)

训练模型

模型准确率计算:

def evaluate_accuracy(data_iter, net, device=None):if device is None and isinstance(net, torch.nn.Module):# 如果没指定device就使用net的devicedevice = list(net.parameters())[0].deviceacc_sum, n = 0.0, 0with torch.no_grad():for X, y in data_iter:if isinstance(net, torch.nn.Module):net.eval() # 评估模式, 这会关闭dropoutacc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()net.train() # 改回训练模式else: if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数# 将is_training设置成Falseacc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() else:acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0]return acc_sum / n

在GPU上训练模型:

def train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):net = net.to(device)print("training on ", device)loss = torch.nn.CrossEntropyLoss()for epoch in range(num_epochs):train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()for X, y in train_iter:X = X.to(device)y = y.to(device)y_hat = net(X)l = loss(y_hat, y)optimizer.zero_grad()l.backward()optimizer.step()train_l_sum += l.cpu().item()train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()n += y.shape[0]batch_count += 1test_acc = evaluate_accuracy(test_iter, net)print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

学习率采用0.001,训练算法使用Adam算法,损失函数使用交叉熵损失函数。

lr, num_epochs = 0.001, 5optimizer = torch.optim.Adam(net.parameters(), lr=lr)train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。