1000字范文,内容丰富有趣,学习的好帮手!
1000字范文 > TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类

TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类

时间:2018-09-05 11:43:40

相关推荐

TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类

TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类

目录

设计思路

实现代码

设计思路

更新……

实现代码

# -*- coding:utf-8 -*-import tensorflow as tfimport numpy as npfrom tensorflow.contrib import rnnfrom tensorflow.examples.tutorials.mnist import input_data#根据电脑情况设置 GPUconfig = tf.ConfigProto()config.gpu_options.allow_growth = Truesess = tf.Session(config=config)# 1、定义数据集mnist = input_data.read_data_sets('MNIST_data', one_hot=True)print(mnist.train.images.shape)#2、定义模型超参数lr = 1e-3# batch_size = 128batch_size = tf.placeholder(tf.int32) #采用占位符的方式,因为在训练和测试的时候要用不同的batch_size。注意类型必须为 tf.int32input_size = 28# 每个时刻的输入特征是28维的,就是每个时刻输入一行,一行有 28 个像素timestep_size = 28 # 时序持续长度为28,即每做一次预测,需要先输入28行hidden_size = 256 # 每个隐含层的节点数layer_num = 2 # LSTM layer 的层数class_num = 10 # 最后输出分类类别数量,如果是回归预测的话应该是 1_X = tf.placeholder(tf.float32, [None, 784])y = tf.placeholder(tf.float32, [None, class_num])keep_prob = tf.placeholder(tf.float32)#3、LSTM模型的搭建、训练、测试#3.1、LSTM模型的搭建X = tf.reshape(_X, [-1, 28, 28]) #RNN 的输入shape = (batch_size, timestep_size, input_size),把784个点的字符信息还原成 28 * 28 的图片lstm_cell = rnn.BasicLSTMCell(num_units=hidden_size, forget_bias=1.0, state_is_tuple=True)#定义一层 LSTM_cell,只需要说明 hidden_size, 它会自动匹配输入的 X 的维度lstm_cell = rnn.DropoutWrapper(cell=lstm_cell, input_keep_prob=1.0, output_keep_prob=keep_prob) #添加 dropout layer, 一般只设置 output_keep_probmlstm_cell = rnn.MultiRNNCell([lstm_cell] * layer_num, state_is_tuple=True) #调用 MultiRNNCell来实现多层 LSTMinit_state = mlstm_cell.zero_state(batch_size, dtype=tf.float32) #用全零来初始化state#3.2、LSTM模型的运行:构建好的网络运行起来#T1、调用 dynamic_rnn()法# ** 当 time_major==False 时, outputs.shape = [batch_size, timestep_size, hidden_size],所以,可以取 h_state = outputs[:, -1, :] 作为最后输出# ** state.shape = [layer_num, 2, batch_size, hidden_size],或者,可以取 h_state = state[-1][1] 作为最后输出,最后输出维度是 [batch_size, hidden_size]# outputs, state = tf.nn.dynamic_rnn(mlstm_cell, inputs=X, initial_state=init_state, time_major=False)# h_state = outputs[:, -1, :] # 或者 h_state = state[-1][1]#T2、自定义LSTM迭代按时间步展开计算:为了更好的理解 LSTM 工作原理把T1的函数自己来实现#(1)、可以采用RNNCell的 __call__()函数,来实现LSTM按时间步迭代。outputs = list()state = init_statewith tf.variable_scope('RNN'):for timestep in range(timestep_size):if timestep > 0:tf.get_variable_scope().reuse_variables()(cell_output, state) = mlstm_cell(X[:, timestep, :], state) # 这里的state保存了每一层 LSTM 的状态outputs.append(cell_output)h_state = outputs[-1]#3.3、LSTM模型的训练# 定义 softmax 的连接权重矩阵和偏置:上面 LSTM 部分的输出会是一个 [hidden_size] 的tensor,我们要分类的话,还需要接一个 softmax 层# out_W = tf.placeholder(tf.float32, [hidden_size, class_num], name='out_Weights')# out_bias = tf.placeholder(tf.float32, [class_num], name='out_bias')W = tf.Variable(tf.truncated_normal([hidden_size, class_num], stddev=0.1), dtype=tf.float32)bias = tf.Variable(tf.constant(0.1,shape=[class_num]), dtype=tf.float32)y_pre = tf.nn.softmax(tf.matmul(h_state, W) + bias)#定义损失和评估函数cross_entropy = -tf.reduce_mean(y * tf.log(y_pre))train_op = tf.train.AdamOptimizer(lr).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(y,1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))sess.run(tf.global_variables_initializer())for i in range(2000):_batch_size = 128batch = mnist.train.next_batch(_batch_size)if (i+1)%200 == 0:train_accuracy = sess.run(accuracy, feed_dict={_X:batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size})# 已经迭代完成的 epoch 数: mnist.train.epochs_completedprint("Iter%d, step %d, training accuracy %g" % ( mnist.train.epochs_completed, (i+1), train_accuracy))sess.run(train_op, feed_dict={_X: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size})# 计算测试数据的准确率print("test accuracy %g"% sess.run(accuracy, feed_dict={_X: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0, batch_size:mnist.test.images.shape[0]}))

参考文章:/mfryf/p/7903958.html

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。