1000字范文,内容丰富有趣,学习的好帮手!
1000字范文 > 游丝 调速器 用于钟表的机芯以及钟表的制作方法

游丝 调速器 用于钟表的机芯以及钟表的制作方法

时间:2022-01-07 15:05:28

相关推荐

游丝 调速器 用于钟表的机芯以及钟表的制作方法

本发明涉及游丝(ひげぜんまい)、调速器、用于钟表的机芯以及钟表。

背景技术:

在机械式钟表中,关于摆轮(てんぷ),振动周期设定于预定的规定值内是很重要的。这是因为,如果振动周期从规定值偏离,则机械式钟表的差率(钟表慢、快的程度)变化。

作为用于调整差率的方法,一般已知如下的方法:通过快慢针而调整游丝的长度(有效长度),关于该游丝,内端部固定于摆轮的摆轴(てん真),外端部固定于外桩(ひげ持)。

快慢针主要地配备有:外夹(ひげ受),其能够围绕摆轮的中心轴线旋转,配置于游丝的径向方向外侧;和内夹(ひげ棒),其配置于游丝的径向方向内侧。由此,游丝位于外夹与内夹之间,以在这两者之间沿径向方向振动的方式构成。

在利用这种快慢针来调整差率的情况下,一般而言,在对固定游丝的外端部的外桩的位置进行调整之后,使快慢针围绕摆轮的中心轴线旋转,沿游丝的长度方向调整外夹和内夹的位置。由此,在游丝振动时,能够对当与外夹或内夹接触时的接触点和游丝的内端部之间的有效长度进行调整,能够进行差率调整。

而且,还已知如下的快慢针:在进行差率调整时,通过对作为外夹与内夹之间的间隙的间隙量(俯仰宽度(あおり幅))进行调整,从而能够进行差率的等时性调整(俯仰调整(あおり調整))。

由于在摆轮往复一次的期间,游丝重复进行与外夹接触、与外夹分离、与内夹接触、与内夹分离这一动作,因而交替地重复有效长度短的状态和长的状态。另外,由于关于游丝,振动的强弱取决于卷紧量而变化,因而与外夹或内夹接触的时间变化。因此,例如,有时候有效长度短的状态的时间变长,有可能对差率的等时性造成影响。

因此,进行如下的动作:通过由快慢针进行俯仰调整,从而使一个周期中的弹簧常数的强弱取决于摆角而变化,由此调整等时性。特别地,在组装高精度的机械式钟表的情况下,对进行等时性调整予以重视。

然而,在不具备快慢针的情况下,在例如通过可变惯性平衡轮(可変慣性てん輪)等而进行调速器的时间调整的情况下,不能进行利用快慢针的等时性调整。因此,组装完成的调速器的等时性依赖于各构成零件单体的精度或装配位置等,对等时性造成偏差。

此外,在不利用快慢针而进行等时性调整的情况下,已知如下的方法:利用镊子等来手动地修正例如游丝中的主要外端部侧的位置或形状等。而且,作为在进行这种修正的情况下使用的游丝,已知如下的游丝:在游丝中的最外周部分,形成有刚性增强部,该刚性增强部至少部分地补偿机芯的差率的变动(其依赖于由擒纵器产生的摆轮的振动振幅)(例如,参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特表-525591号公报。

技术实现要素:

发明要解决的课题

然而,在修正游丝的外端部侧的现有的方法中,不仅调整量并非为定量的,而且要求非常细致的作业。因此,等时性调整的难易程度高,而且,等时性调整需要大量人工和时间,存在改善的余地。

本发明是考虑到这样的情况而作出的,其目的是,提供如下的游丝、调速器、用于钟表的机芯以及钟表:即使不利用快慢针,也能够容易且精度良好地进行等时性调整。

用于解决课题的方案

(1)本发明所涉及的游丝配备有游丝主体,关于游丝主体,内端部侧固定于围绕轴线旋转的第一部件,而且,外端部侧保持于第二部件,并且,游丝主体在从前述内端部至前述外端部之间,在与前述轴线交叉的面内按既定圈数以漩涡状形成,当以从前述轴线方向观察、而在使前述游丝主体的退绕位置和前述轴线连结的第一假想线与使保持于前述第二部件的前述游丝主体的保持位置和前述轴线连结的第二假想线之间形成的围绕前述轴线的角度作为卷绕角时,前述游丝主体在前述卷绕角限制于预定的第一角度范围内的状态下,以前述外端部侧在前述面内旋转的方式由前述第二部件保持,或在限制于预定的第二角度范围内的状态下,以前述外端部侧沿前述游丝主体的径向方向移动的方式由前述第二部件保持,前述游丝主体进一步在前述卷绕角限制于前述第一角度范围内时,由于在前述面内的旋转而变化的等时性变化量的情况比由于向前述径向方向的移动而变化的等时性变化量更大,而且,在前述卷绕角限制于前述第二角度范围内时,由于向前述径向方向的移动而变化的等时性变化量的情况比由于在前述面内的旋转而变化的等时性变化量更大。

依据本发明所涉及的游丝,通过在卷绕角限制于第一角度范围内的状态下,对游丝主体的外端部侧在面内进行旋转操作,或在卷绕角限制于第二角度范围内的状态下,对游丝主体的外端部侧沿径向方向进行移动操作,从而能够进行等时性调整。

特别地,关于游丝主体,在卷绕角限制于第一角度范围内时,由于在面内的旋转而变化的等时性变化量的情况比由于向径向方向的移动而变化的等时性变化量更大。即,与向径向方向的移动操作相比,在面内的旋转操作的情况能够使等时性以更好的敏感度变化。与此相反,关于游丝主体,在卷绕角限制于第二角度范围内时,由于向径向方向的移动而变化的等时性变化量的情况比由于在面内的旋转而变化的等时性变化量更大。即,与在面内的旋转相比,向径向方向的移动的情况能够使等时性以更好的敏感度变化。

因此,在对游丝主体的外端部侧在面内进行旋转操作或沿径向方向进行移动操作的情况中的任一种情况下,都能够使等时性以起因于任一方的操作而导致的变化量变化。即,在难以受到由于另一方的操作而造成的影响的状态下,能够使等时性以起因于一方的操作而导致的变化量变化。而且,能够使由于旋转操作或移动操作而变化的等时性的变化量成为与旋转操作量或移动操作量大体上成比例的关系。因此,能够使等时性以与游丝主体的外端部侧的旋转操作或移动操作对应的变化量变化,能够定量地进行等时性调整。

由于以上的情况,因而即使不利用快慢针,也能够定量地进行等时性调整,并且,能够容易且精度良好地进行等时性调整。

(2)也可以是,以当前述卷绕角为零时为基准,当以前述第二部件前进至前述游丝主体的缠绕方向侧的方向作为前述卷绕角的正方向,以其相反方向作为前述卷绕角的负方向时,前述第一角度范围成为前述卷绕角被包含在(-125度±5度至-215度±5度)、或(-35度±5度至+55度±5度)的范围内的角度范围,前述第二角度范围成为前述卷绕角被包含在(-125度±5度至-35度±5度)、或(+55度±5度至+145度±5度)的范围内的角度范围。

在此情况下,当卷绕角被包含在(-125度±5度至-215度±5度)、或(-35度±5度至+55度±5度)的范围内时,关于游丝主体,由于在面内的旋转而变化的等时性变化量的情况比由于向径向方向的移动而变化的等时性变化量更大。另外,当卷绕角被包含在(-125度±5度至-35度±5度)、或(+55度±5度至+145度±5度)的范围内时,由于向径向方向的移动而变化的等时性变化量的情况比由于在面内的旋转而变化的等时性变化量更大。

因此,通过当卷绕角被包含在(-125度±5度至-215度±5度)、或(-35度±5度至+55度±5度)的范围内时,对游丝主体的外端部侧进行旋转操作,或当卷绕角被包含在(-125度±5度至-35度±5度)、或(+55度±5度至+145度±5度)的范围内时,对游丝主体的外端部侧沿径向方向进行移动操作,从而能够使等时性以起因于各操作而导致的变化量变化,能够进行等时性调整。

(3)也可以是,前述第一角度范围成为前述卷绕角被包含在(-170度±α度)、或(+10度±α度)的范围内的角度范围,前述第二角度范围成为前述卷绕角被包含在(-80度±α度)、或(+100度±α度)的范围内的角度范围,前述α是被包含在5度至30度的范围内的角度。

在此情况下,当卷绕角被包含在(-170度±α度)、或(+10度±α度)的范围内时,关于游丝主体,由于在面内的旋转而变化的等时性的最大变化量变得最大,与此相反,由于向径向方向的移动而变化的等时性的最大变化量变得最小。因此,等时性伴随着在面内的旋转操作而高敏感度地变化,但对于向径向方向的移动操作而变得不敏感,对于移动操作而变得难以变化。

因此,通过当卷绕角被包含在(-170度±α度)、或(+10度±α度)的范围内时,进行在面内的旋转操作,从而能够使等时性以起因于该操作而导致的变化量更有效地变化,能够进一步容易且精度良好地进行等时性调整。

同样地,当卷绕角被包含在(-80度±α度)、或(+100度±α度)的范围内时,关于游丝主体,由于向径向方向的移动而变化的等时性的最大变化量变得最大,与此相反,由于在面内的旋转而变化的等时性的最大变化量变得最小。因此,等时性伴随着向径向方向的移动操作而高敏感度地变化,但对于在面内的旋转操作而变得不敏感,对于旋转操作而变得难以变化。

因此,通过当卷绕角被包含在(-80度±α度)、或(+100度±α度)的范围内时,进行向径向方向的移动操作,从而能够使等时性以起因于该操作而导致的变化量更有效地变化,能够进一步容易且精度良好地进行等时性调整。

此外,在第一角度范围内,上述α从30度向5度越小,就越是能够更有效地达到上述的作用效果。例如,与当卷绕角被包含在(-170度±30度)、或(+10度±30度)的范围内时相比,被包含在(-170度±25度)、或(+10度±25度)的范围内的情况能够有效地达到上述的作用效果。

同样地,在第二角度范围内,上述α从30度向5度越小,就越是能够更有效地达到上述的作用效果。例如,与当卷绕角被包含在(-80度±30度)、或(+100度±30度)的范围内时相比,被包含在(-80度±25度)、或(+100度±25度)的范围内的情况能够有效地达到上述的作用效果。

优选,在任一种情况下,α的值越小,就越是能够都有效地达到上述的作用效果。具体而言,作为α,考虑自30度起每5度地减小。

(4)也可以是,前述第一角度范围成为前述卷绕角被包含在(-170度±5度)、或(+10度±5度)的范围内的角度范围,前述第二角度范围成为前述卷绕角被包含在(-80度±5度)、或(+100度±5度)的范围内的角度范围。

在此情况下,能够更进一步有效地达到上述的作用效果。

(5)也可以是,前述第一部件成为摆轮,前述游丝主体的前述内端部固定于前述摆轮中的摆轴。

在此情况下,能够作为能够进行摆轮的等时性调整的游丝而利用。

(6)也可以是,关于前述游丝主体,前述外端部侧在前述面内旋转,或前述外端部侧沿前述摆轴的径向方向移动,由此,以在前述摆轮的摆角为200度至250度的范围内包含极值的曲线等时性变化。

在此情况下,当在摆角为200度至250度的范围内进行等时性调整时,即使是例如微小的操作(旋转操作、向径向方向的移动操作),也能够使等时性敏感度良好地有效地变化,易于容易地进行等时性调整。

(7)本发明所涉及的调速器配备有:前述游丝;前述摆轮;前述第二部件;以及支撑部件,其以能够相对于前述摆轮而围绕前述轴线相对旋转的方式组合,并且,以能够移动的方式支撑前述第二部件,前述支撑部件以能够在前述面内旋转的方式支撑前述第二部件,或以能够沿前述摆轴的径向方向移动的方式支撑前述第二部件。

在此情况下,由于通过使支撑部件相对于摆轮而围绕轴线相对旋转,从而能够使第二部件与支撑部件一起沿周向方向移动,因而能够将游丝的卷绕角设定为任意角度。由此,能够将卷绕角恰当地设定成限制于第一角度范围内或第二角度范围内。而且,由于支撑部件以能够旋转或能够沿径向方向移动的方式支撑第二部件,因而通过取决于卷绕角而对第二部件进行旋转操作或向径向方向的移动操作,从而能够如前所述地使游丝的外端部侧位移,其结果是,能够进行等时性调整。

特别地,与如现有技术那样利用镊子等来进行等时性调整的情况不同,在恰当地进行卷绕角的设定之后,不仅能够通过进行旋转操作或移动操作的一系列流程而顺利地进行等时性调整,而且能够使等时性定量地变化,因而能够容易且恰当地进行等时性调整。

(8)本发明所涉及的用于钟表的机芯配备有前述调速器。

(9)本发明所涉及的钟表配备有前述用于钟表的机芯。

在此情况下,由于具备上述的游丝,因而能够作为通过高精度的等时性调整而导致差率的误差少的高性能的用于钟表的机芯和钟表。

发明的效果

依据本发明,即使不利用快慢针,也能够容易且精度良好地进行等时性调整。因此,能够得到差率的误差少的高性能的用于钟表的机芯和钟表。

附图说明

图1是示出本发明所涉及的第一实施方式的图,是钟表的外观图;

图2是图1中机芯的俯视图;

图3是图2中所示出的调速器的立体图;

图4是图3中所示出的沿着a-a线的调速器的截面图;

图5是图3中所示出的调速器的俯视图,是示出外桩环(ひげ持受)、游丝以及摆轮的关系的俯视图;

图6是不带外端型游丝的俯视图;

图7是卷紧发条型游丝的俯视图;

图8是示出卷绕角为0度处的在未操作的情况下、在旋转操作的情况下、在移动操作的情况下的等时性曲线的图;

图9是示出在旋转操作时的等时性变化曲线与在移动操作时的等时性变化曲线的关系的图;

图10是示出在旋转操作时的等时性变化的最大变化量的变化曲线与在移动操作时的等时性变化的最大变化量的变化曲线的关系的图;

图11是示出在不带外端型游丝中在旋转操作时的等时性变化的最大变化量的变化曲线与在移动操作时的等时性变化的最大变化量的变化曲线的关系的图;

图12是示出在卷紧发条型游丝中在旋转操作时的等时性变化的最大变化量的变化曲线与在移动操作时的等时性变化的最大变化量的变化曲线的关系的图;

图13是关于带有外端型、不带外端型、卷紧发条型游丝中的各个而示出在旋转操作时的等时性变化的最大变化量的变化曲线与在移动操作时的等时性变化的最大变化量的变化曲线的关系的图;

图14是示出在四个卷绕角中由于旋转操作而变化的等时性的变化曲线的关系的图;

图15是示出在四个卷绕角中由于移动操作而变化的等时性的变化曲线的关系的图;

图16是在圈数为14圈且摆轮的振动频率为振动8次的情况下,关于带有外端型、不带外端型、卷紧发条型游丝中的各个而示出在旋转操作时的等时性变化的最大变化量的变化曲线与在移动操作时的等时性变化的最大变化量的变化曲线的关系的图;

图17是示出第一实施方式的变形例的调速器的立体图;

图18是示出图17中所示出的外桩环、游丝以及摆轮的关系的立体图;

图19是示出图18中所示出的外桩环与游丝的关系的俯视图;

图20是示出本发明所涉及的第二实施方式的调速器的立体图;

图21是图20中所示出的外桩周边的放大俯视图;

图22是示出本发明所涉及的第三实施方式的调速器的立体图;

图23是示出从图22中所示出的状态拆卸外桩按压件的状态的立体图;

图24是图22中所示出的外桩按压件的立体图。

具体实施方式

以下,参照附图而对本发明所涉及的实施方式进行说明。此外,在本实施方式中,作为钟表的一个示例而举例说明机械式钟表。

(钟表的基本构成)

一般而言,将包含钟表的驱动部分的机械体称为“机芯”。将如下的状态称为钟表的“成品(コンプリート)”:将文字板、针安装于该机芯并放入钟表壳体中而成为完成制品。将构成钟表的基板的主板的两侧中的存在钟表壳体的玻璃的一方侧(即,存在文字板的一方侧)称为机芯的“背侧”。另外,将主板的两侧中的存在钟表壳体的壳体后盖的一方侧(即,与文字板相反的一侧)称为机芯的“表侧”。

此外,在本实施方式中,以从文字板向壳体后盖的方向作为上侧并以其相反侧作为下侧而说明。

(第一实施方式)

如图1中所示出的,本实施方式的钟表1的成品在由未图示的壳体后盖和玻璃2构成的钟表壳体内配备有:机芯(本发明所涉及的用于钟表的机芯)10;文字板3,其具有至少示出与时有关的信息的刻度等;以及指针,其包含示出时的时针4、示出分的分针5以及示出秒的秒针6。

如图2和图3中所示出的,机芯10配备有:主板11;以及摆轮夹板(びてんぷ受)12和未图示的轮系夹板,其比主板11更配置于表侧。在主板11与轮系夹板和摆轮夹板12之间,主要地配设有表侧轮系、对表侧轮系的旋转进行控制的未图示的擒纵器以及对擒纵器进行调速的调速器13。在主板11的背侧,以能够通过玻璃2而视觉辨认的方式配置有文字板3。

此外,本实施方式的机芯10以配备有旋转锤14的自动上弦式的用于钟表的机芯10为例。但是,不限定于此情况,也可以是利用柄轴15的手动上弦式的机芯。

表侧轮系主要地配备有条盒轮、第二轮、第三轮、第四轮。此外,在本实施方式中,为了易于观察附图,省略第二轮、第三轮以及第四轮的图示。图1中所示出的秒针6基于第四轮的旋转而旋转,并且,以由擒纵器和调速器13调速的旋转速度旋转(即,在一分钟内旋转一次)。分针5基于第二轮的旋转或伴随着第二轮的旋转而旋转的分轮的旋转而旋转,并且,以由擒纵器和调速器13调速的旋转速度旋转(即,在一小时内旋转一次)。时针4经由跨轮(日の裏車)来基于伴随着第二轮的旋转而旋转的时轮的旋转而旋转,并且,以由擒纵器和调速器13调速的旋转速度旋转(即,在十二小时或二十四小时内旋转一次)。

擒纵器配备有与第四轮啮合的未图示的擒纵轮和使擒纵轮进行擒纵而有规律地旋转的未图示的锚,通过来自后述的摆轮20的有规律的振动而控制表侧轮系。

如图3和图4中所示出的,调速器13配备有:摆轮(本发明所涉及的第一部件)20,其围绕第一轴线(本发明所涉及的轴线)o1往复旋转(正反旋转);游丝30;外桩(本发明所涉及的第二部件)40,其保持后述的游丝主体31的外端部31b侧;以及外桩环(本发明所涉及的支撑部件)50,其以能够相对于摆轮20而围绕第一轴线o1相对旋转的方式组合,并且,以能够移动的方式支撑外桩40。

此外,在本实施方式中,将在俯视时与第一轴线o1交叉的方向称为径向方向,将围绕第一轴线o1环绕的方向称为周向方向。

摆轮20配备有能够围绕第一轴线o1旋转的摆轴21和安装于摆轴21的平衡轮22,以游丝30作为动力源,围绕第一轴线o1以恒定振幅(摆角)正反旋转。

关于摆轴21,上榫部21a被上轴承60轴支承,并且,下榫部21b被在图2中所示出的主板11形成的未图示的下轴承轴支承。在摆轴21中的上下方向的中间部分,固定有联接至平衡轮22的联接臂部23,并且,固定有内桩(ひげ玉)24和圆盘(振り座)25。

联接臂部23是将摆轴21和平衡轮22沿径向方向联接的部件,内端部联接至环状的凸台部26,凸台部26通过例如压入等而固定于摆轴21,而且,外端部联接至平衡轮22的内周面。由此,平衡轮22经由联接臂部23来安装于摆轴21,与摆轴21一起围绕第一轴线o1正反旋转。但是,联接臂部23的数量、配置或形状可以适当变更。

内桩24比凸台部26更配置于上方,通过例如压入等而固定于摆轴21。

圆盘25比凸台部26更配置于下方,通过例如压入等而固定于摆轴21。圆盘25具有大突缘25a和比大突缘25a更位于下方的小突缘25b。在大突缘25a,例如压入固定有冲击宝石(振り石)27,冲击宝石27由红宝石等人造宝石形成,用于使锚进行动作(摆动)。

上轴承60成为配备有以下部件的耐振轴承:轴承框61,其以圆筒状形成;上孔宝石62,其安装于轴承框61内,以能够旋转的方式支撑摆轴21的上榫部21a;上盖宝石63,其配置于上孔宝石62的上方,从轴向方向支承摆轴21的上榫部21a;以及盖宝石按压弹簧64,其配置于上盖宝石63的更靠上方,将上盖宝石63固定于轴承框61。

但是,上轴承60的构成不限定于上述的情况,只要能够以能够旋转的方式支撑摆轴21的上榫部21a,就也可以采用其它构成。

轴承框61配备有上部框61a和外径比上部框61a更小的下部框61b,以外径不同的两段筒状形成。在形成于摆轮夹板12的基座板70的轴承筒部71的内侧,将下部框61b通过例如压入等而固定,由此,安装轴承框61。此外,轴承框61和轴承筒部71与第一轴线o1同轴地配设。

例如,如图2中所示出的,摆轮夹板12具有与钟表壳体的形状相符合而以圆弧状延伸的主体部72。在主体部72,形成有安装孔73,并且,在外缘部的一部分,按以阶梯状凹陷的方式形成有上述基座板70。如图2中所示出的,摆轮夹板12由利用安装孔73的固定螺丝74固定于主板11。但是,摆轮夹板12的形状不限定于上述的情况,可以适当变更。

如图4中所示出的,在基座板70,与第一轴线o1同轴地形成有上下贯通基座板70的贯通孔75。轴承筒部71以如沿着贯通孔75的开口周缘那样从基座板70向上方立起的方式形成,其内侧与贯通孔75连通。因此,轴承框61的下部框61b通过例如压入而固定于轴承筒部71的内侧和贯通孔75内。此外,轴承框61的上部框61a配置于轴承筒部71的开口端上,比轴承筒部71的外径更大地形成。

如图3至图5中所示出的,外桩环50以能够旋转的方式嵌合于摆轮夹板12中的轴承筒部71,由此,能够相对于轴承筒部71而围绕第一轴线o1相对旋转。

外桩环50具有:联接环51,其嵌合于轴承筒部71的外侧;和外桩臂52,其从联接环51向径向方向外侧延伸,并且,在其顶端部侧(外端部侧)以能够移动的方式支撑外桩40。具体而言,外桩环50以能够围绕相对于第一轴线o1而平行的第二轴线o2旋转的方式支撑外桩40。

此外,联接环51以周向方向的一部分被分开的在俯视时呈现的c形状形成,但也可以按环状形成。

外桩臂52配备有将外桩40从周向方向的两侧夹入而保持的第一外桩臂53和第二外桩臂54的两条臂。这些第一外桩臂53和第二外桩臂54能够沿周向方向弹性变形,预先被施力,使得顶端部彼此接近。由此,能够将外桩40的轴体41夹持于第一外桩臂53与第二外桩臂54之间。

第一外桩臂53中的朝向第二外桩臂54侧的第一夹持面53a和第二外桩臂54中的朝向第一外桩臂53侧的第二夹持面54a将外桩40夹于其间而沿周向方向对置。在这些第一夹持面53a和第二夹持面54a,分别以塌陷的方式形成有与外桩40的轴体41的外径对应的在俯视时呈现圆弧状的弯曲面55。

第一外桩臂53和第二外桩臂54以利用弯曲面55来从周向方向夹持轴体41的方式支撑外桩40。由此,外桩40并非沿径向方向发生位置偏离,而是以能够围绕第二轴线o2旋转的方式被支撑于第一外桩臂53与第二外桩臂54之间。

外桩40配备有:圆柱状的轴体41,其沿着第二轴线o2伸长;头部42,其形成于轴体41的上端部;以及内侧脚部43和外侧脚部44,其从轴体41的下端部向下方突出。

轴体41以在第一外桩臂53的弯曲面55和第二外桩臂54的弯曲面55的内侧配置的状态夹持于第一外桩臂53与第二外桩臂54之间。头部42与轴体41的上端部一体地形成,并且,以与第一外桩臂53和第二外桩臂54的上表面重叠的方式配置。

由此,外桩40在至少防止向下方脱落的状态下以能够围绕第二轴线o2旋转的方式夹持(支撑)于第一外桩臂53与第二外桩臂54之间。

此外,头部42以外周缘部的一部分具有彼此互相对置的直线部42a的方式形成,能够利用直线部42a来使未图示的调整工具等卡合于头部42。由此,能够利用调整工具来围绕第二轴线o2对外桩40进行旋转操作。

后述的游丝主体31的最外周弹簧部32沿周向方向插入贯通于内侧脚部43与外侧脚部44之间。即,内侧脚部43比最外周弹簧部32更配置于径向方向内侧,外侧脚部44比最外周弹簧部32更配置于径向方向外侧。然后,游丝主体31的最外周弹簧部32中的在内侧脚部43和外侧脚部44的内侧插入贯通的部分通过例如熔敷等来相对于内侧脚部43和外侧脚部44而一体地固定。

由此,游丝30成为包含外端部31b的最外周弹簧部32由外桩40固定(保持)的状态。以下,对游丝30详细地进行说明。

(游丝)

如图5中所示出的,游丝30配备有如下的游丝主体31:内端部31a侧经由内桩24来固定于摆轴21,而且,外端部31b侧保持于上述的外桩40,并且,在从内端部31a至外端部31b之间,游丝主体31在与第一轴线o1交叉的面内按既定圈数以漩涡状形成。

游丝主体31是由例如铁或镍等金属构成的薄板弹簧,在以第一轴线o1为原点的极坐标系中,以沿着阿基米德曲线的漩涡状形成。由此,游丝主体31以沿径向方向大约等间隔地相邻的方式以多圈缠绕。此外,游丝主体31的材质不限定于上述的情况,可以适当变更。另外,游丝主体31的形状不限定于上述的沿着阿基米德曲线的漩涡状,也可以变更为间距变化的形状(例如对数螺旋等)。

游丝主体31中的包含外端部31b并且位于径向方向的最外侧的最外周弹簧部32的一部分成为如下的圆弧部34:经由弯折部(癖付け部)33来与径向方向外侧分离,并且,曲率半径比其它部分更大地形成。该圆弧部34的周端部成为游丝主体31的外端部31b。另外,最外周弹簧部32中的圆弧部34的部分如前所述地保持(固定)于外桩40。

如上所述地形成的本实施方式的游丝30被分类为所谓的扁平游丝,并且,成为在最外周弹簧部32经由弯折部33而形成有圆弧部34的外端形状。在本实施方式中,有时候针对这样形成的游丝30而简称为“带有外端式(外端有り)”或“带有外端式发条(外端有りのぜんまい)”。

可是,在本发明中,游丝30的形状不限定于“带有外端式”,可以采用其它形状。例如,如图6中所示出的,也可以采用如下的简单的外端形状的游丝80:是所谓的扁平游丝中的一种,但并未在最外周弹簧部32经由弯折部而形成圆弧部。有时候针对此情况下的游丝80而简称为“不带外端式(外端無し)”或“不带外端式发条(外端無しのぜんまい)”。

此外,在图6中,图示缠绕方向相对于图5中所示出的游丝30而相反的情况。

而且,如图7中所示出的,也可以采用如下的被分类为所谓的卷紧式游丝的游丝90:使最外周弹簧部32的一部分从面内升起(浮起),使外端部31b配置于自开始升起的部分起的径向方向的相反侧。有时候针对此情况下的游丝90而简称为“卷紧式发条(巻上ぜんまい)”。

此外,在图7中,图示缠绕方向相对于图5中所示出的游丝30而相反的情况。

在本实施方式中,如以下那样定义卷绕角。

即,如图5中所示出的,将从摆轴21的轴向方向观察而在使游丝主体31的退绕位置p1和第一轴线o1连结的第一假想线l1与使保持于外桩40的游丝主体31的保持位置p2和第一轴线o1连结的第二假想线l2之间形成的以第一轴线o1为中心的角度定义为卷绕角θ。

此外,退绕位置p1是指游丝主体31中的在包含内端部31a且位于径向方向的最内侧的最内周弹簧部35中实质上固定于内桩24的位置。因此,游丝主体31的内端部31a的位置和退绕位置p1有时候未必是一致的。在本实施方式中,游丝主体31的内端部31a和退绕位置p1也沿周向方向略微偏离。

而且,保持位置p2是指游丝主体31中的在最外周弹簧部32中实质上固定(保持)于外桩40的位置。因此,游丝主体31的外端部31b的位置和保持位置p2有时候未必是一致的。在本实施方式中,游丝主体31的外端部31b和保持位置p2也沿周向方向偏离。

而且,在本实施方式中,将卷绕角θ的方向(即,正(+)方向和负(-)方向)如以下那样定义。

即,以当卷绕角θ为0(零)时(当第一假想线l1和第二假想线l2一致时)为基准,将保持位置p2从该基准位置前进至游丝主体31的缠绕方向侧的方向作为卷绕角θ的正方向(在图5中,表示为“+”),将其相反方向定义为卷绕角θ的负方向(在图5中,表示为“-”)。因此,在图5中,成为正方向的卷绕角θ。相对于此,例如,在图6中,成为负方向的卷绕角θ。

(游丝的特性)

接着,在本实施方式的游丝30中,对使等时性在对游丝主体31的外端部31b侧进行旋转操作或沿径向方向进行移动操作时如何变化与卷绕角θ相关联而计算的结果进行说明。

此外,使游丝主体31的外端部31b侧旋转的旋转操作是使游丝主体31中的保持于外桩40的部分在与摆轴21的轴向方向交叉的面内旋转(即,围绕第二轴线o2旋转)的操作。以下,有时候简称为“旋转操作”。

另外,使游丝主体31的外端部31b侧沿径向方向移动的移动操作是使游丝主体31中的保持于外桩40的部分沿着摆轴21的径向方向移动的操作。以下,有时候简称为“移动操作”。

另外,上述计算通过如下的过程而实施计算:将游丝30分割成既定要素,将弹性体的变形理论适用于各要素,使用以当摆轮20振动时的游丝30的几何学中心为中心而计算的转矩来对摆轮20的运动方程式(常微分方程式)求时间积分。

首先,在卷绕角θ为0度的情况下,对关于未对游丝主体31的外端部31b侧进行任何操作的情况(以下,有时候简称为“操作前”)、对其进行旋转操作的情况以及对其进行移动操作的情况的三个模式的等时性进行计算。在图8中示出基于其计算结果的各个等时性曲线。

在图8中,等时性曲线cl1示出操作前的等时性曲线,等时性曲线cl2示出旋转操作后的等时性曲线,等时性曲线cl3示出移动操作后的等时性曲线。此外,在图8中,横轴示出摆轮20的摆角,纵轴示出成为时刻精度的差率。另外,作为摆轮20的摆角,在120度至300度的范围内计算。

另外,旋转操作以使游丝主体31中的保持于外桩40的部分以第二轴线o2为中心而逆时针转地旋转1度的情况为例。另外,移动操作以使游丝主体31中的保持于外桩40的部分向径向方向的外侧移动+20μm的情况为例。

而且,在本计算中,以游丝30的圈数为12圈的情况为例。另外,作为摆轮20的振动频率,以振动10次(即,每1秒振动10次(在1小时内振动36000次)的情况)为例。

接下来,在图9中示出对操作前的等时性曲线cl1与旋转操作后的等时性曲线cl2的差分进行计算并基于其计算结果而算出的旋转操作时的等时性变化曲线cl4。同样地,在图9中示出对操作前的等时性曲线cl1与移动操作后的等时性曲线cl3的差分进行计算并基于其计算结果而算出的移动操作时的等时性变化曲线cl5。此外,在图9中,横轴示出摆轮20的摆角,纵轴示出成为时刻精度的等时性变化量。

接下来,在旋转操作时的等时性变化曲线cl4中,进行从等时性变化量的最大值减去最小值(最大值-最小值)的计算。

在图9的示例中,摆角220度处的值成为最大值(大约2.16),摆角120度处的值成为最小值(大约-2.05)。因此,(最大值-最小值)成为大约4.21。因此,作为该值(最大值-最小值)的大约4.21成为卷绕角θ为0度处的在旋转操作时的等时性变化的最大变化量。

同样地,在移动操作时的等时性变化曲线cl5中,进行从等时性变化量的最大值减去最小值(最大值-最小值)的计算。在图9的示例中,摆角300度处的值成为最大值(大约-1.02),摆角200度处的值成为最小值(大约-1.44)。因此,(最大值-最小值)成为大约0.42。因此,作为该值(最大值-最小值)的大约0.42成为卷绕角θ为0度处的在移动操作时的等时性变化的最大变化量。

此外,如图9中所示出的,旋转操作时的等时性变化曲线cl4成为如在摆角为200度至250度的范围内包含极值(极大值,即上述最大值)那样的向上凸的曲线。同样地,移动操作时的等时性变化曲线cl5成为如在摆角为180度至250度的范围内包含极值(极小值,即上述最小值)那样的向下凸的曲线。

这样的曲线的倾向不限定于卷绕角θ为0度的情况,无论是哪个卷绕角θ都示出同样的倾向(参照图14和图15)。

接下来,在卷绕角θ为(-180度至+180度)的范围内,针对卷绕角的每一度而重复进行上述的计算,对各卷绕角θ处的在旋转操作时的等时性变化的最大变化量和在移动操作时的等时性变化的最大变化量分别进行计算。

然后,关于各卷绕角θ处的在旋转操作时的等时性变化的最大变化量和在移动操作时的等时性变化的最大变化量,在图10中示出汇集成一个而易于观察的图表。在图10中,横轴示出卷绕角θ,纵轴示出等时性变化的最大变化量。

在图10中,由记号“□”标示各卷绕角θ处的在旋转操作时的等时性变化的最大变化量的值。然后,使由记号“□”标示的在各卷绕角θ处的最大变化量的值相连的曲线成为旋转操作时的等时性变化的最大变化量的变化曲线cl6。

同样地,由记号“◇”标示各卷绕角θ处的在移动操作时的等时性变化的最大变化量的值。然后,使由记号“◇”标示的在各卷绕角θ处的最大变化量的值相连的曲线成为移动操作时的等时性变化的最大变化量的变化曲线cl7。

如图10中所示出的,变化曲线cl6和变化曲线cl7全都成为最大变化量的最大值和最小值交替地周期性地出现的曲线。而且,成为如下的状态:变化曲线cl6中的最大变化量的最大值和变化曲线cl7中的最大变化量的最小值在大约同等的卷绕角θ的范围内对应,而且,变化曲线cl6中的最大变化量的最小值和变化曲线cl7中的最大变化量的最大值在大约同等的卷绕角θ的范围内对应。即,变化曲线cl6和变化曲线cl7成为正如只要卷绕角θ为90度至110度左右,相位就偏离那样的状态。

此外,在图10中,为了易于比较变化曲线cl6和变化曲线cl7,修正变化曲线cl6和变化曲线cl7的曲线,使得各自的最大变化量的最大值示出大约1的值。

但是,即使在此情况下,由于仅仅变化曲线cl6和变化曲线cl7的曲线的斜率变化,因而关于相对于卷绕角θ的变化而也与修正前同样。而且,由于变化曲线cl6、cl7与旋转操作和移动操作的量大体上成比例,因而与修正移动量的情况同样。

由于以上的情况,因而能够通过图10来掌握在带有外端的本实施方式的游丝30中,在对游丝主体31的外端部31b侧进行旋转操作或沿径向方向进行移动操作的情况下,等时性取决于卷绕角θ而如何变化。

而且,对图6中所示出的不带外端型游丝80和图7中所示出的卷紧发条型游丝90分别进行上述的一系列计算。

在图11中示出对图6中所示出的游丝80(不带外端式发条)进行计算而得到其结果的在旋转操作时的等时性变化的最大变化量的变化曲线cl8和在移动操作时的等时性变化的最大变化量的变化曲线cl9。如图11中所示出的,变化曲线cl8和变化曲线cl9是示出与上述的变化曲线cl6和变化曲线cl7同样的倾向的曲线。

而且,在图12中示出对图7中所示出的游丝90(卷紧式发条)进行计算而得到其结果的在旋转操作时的等时性变化的最大变化量的变化曲线cl10和在移动操作时的等时性变化的最大变化量的变化曲线cl11。如图12中所示出的,变化曲线cl10和变化曲线cl11是示出与上述的变化曲线cl6和变化曲线cl7同样的倾向的曲线。

图13是使图10至图12的各变化曲线汇集成一个而图表化的图。如图13中所示出的,即使在游丝30的外端形状为任一种的情况下,旋转操作时的等时性变化的最大变化量的变化曲线cl12和移动操作时的等时性变化的最大变化量的变化曲线cl13也示出相同倾向。

由于以上的情况,因而带有外端的本实施方式的游丝30具有以下的特性。此外,即使如前所述地是不带外端式发条(游丝80)和卷紧式发条(游丝90),以下的特性也同样如此。

即,关于游丝主体31,当卷绕角θ限制于预定的第一角度范围e1内时,由于围绕第二轴线o2的旋转操作而变化的等时性变化量的情况比由于向径向方向的移动操作而变化的等时性变化量更大,而且,卷绕角θ是与第一角度范围e1不同的角度,而且,当限制于预定的第二角度范围e2内时,由于向径向方向的移动操作而变化的等时性变化量的情况比由于围绕第二轴线o2的旋转操作而变化的等时性变化量更大。

作为第一角度范围e1,卷绕角θ属于(-125度±5度至-215度(即+145度)±5度)或(-35度±5度至+55度±5度)的范围内。作为第二角度范围e2,卷绕角θ属于(-125度±5度至-35度±5度)或(+55度±5度至+145度±5度)的范围内。

而且,作为第一角度范围e1,在卷绕角θ被包含在(-170度±α度)或(+10度±α度)的范围内的角度范围的情况下,关于游丝主体31,由于围绕第二轴线o2的旋转操作而变化的等时性的最大变化量变得最大,与此相反,由于向径向方向的移动而变化的等时性的最大变化量变得最小。

此外,上述α是被包含在5度至30度的范围内的角度。在此情况下,在第一角度范围e1中,上述α越是从30度至5度变小,就越是能够更有效地达到上述的特性。例如,与当卷绕角θ被包含在(-170度±30度)或(+10度±30度)的范围内时相比,被包含在(-170度±25度)或(+10度±25度)的范围内的情况能够更有效地达到上述的特性。更优选为当卷绕角θ被包含在(-170度±5度)或(+10度±5度)的范围内时。

此外,作为α,考虑自30度起每5度地减小,即,按30度、25度、20度、15度、10度、5度的顺序减小。

而且,作为第二角度范围e2,在卷绕角θ被包含在(-80度±α度)或(+100度±α度)的范围内的角度范围的情况下,由于向径向方向的移动操作而变化的等时性的最大变化量变得最大,与此相反,由于围绕第二轴线o2的旋转操作而变化的等时性的最大变化量变得最小。

此外,与以第一角度范围e1说明的情况同样地,上述α是被包含在5度至30度的范围内的角度。在此情况下,在第二角度范围e2内,上述α越是从30度至5度变小,就越是能够更有效地达到上述的特性。例如,与当卷绕角θ被包含在(-80度±30度)或(+100度±30度)的范围内时相比,被包含在(-80度±25度)或(+100度±25度)的范围内的情况能够更有效地达到上述的特性。更优选为当卷绕角θ被包含在(-80度±5度)或(+100度±5度)的范围内时。

此外,作为α,考虑自30度起每5度地减小,即,按30度、25度、20度、15度、10度、5度的顺序减小。

更详细地说明。

图14是示出由于围绕第二轴线o2的旋转操作而变化的等时性的变化曲线的图,图15是示出由于向径向方向的移动操作而变化的等时性的变化曲线的图。

如图14和图15中所示出的,在卷绕角θ为+167度或+13度的情况下,由于旋转操作而导致等时性以良好敏感度变化,但与此相反,对于向径向方向的移动操作而变得不敏感,对于移动操作而变得难以变化。而且,在卷绕角θ为-77度或+103度的情况下,由于移动操作而导致等时性以良好敏感度变化,但与此相反,对于旋转操作而变得不敏感,对于旋转操作而变得难以变化。

此外,图13是如前所述地在圈数为12圈且摆轮20的振动频率为振动10次(即,在1小时内振动36000次)的情况下的结果,但即使在使圈数和振动频率变化的情况下,也能够得到同样的结果。

例如,图16是在圈数为14圈且摆轮20的振动频率为振动8次(即,在1小时内振动28800次)的情况下的相当于图13的图。如从该图16还显而易见的,即使在使圈数和振动频率变化的情况下,也具有上述的特性。

关于如上所述地构成的游丝30,如图5中所示出的,内端部31a侧经由内桩24来固定于摆轴21,外端部31b侧固定(保持)于外桩40。特别地,在本实施方式中,在卷绕角θ限制于预定的第一角度范围e1内的状态下,外桩环50以能够围绕第二轴线o2旋转的方式保持外桩40。具体而言,以卷绕角θ作为+13度。

(游丝的等时性调整)

接着,对在具备如上所述地构成的调速器13的钟表1中进行游丝30的等时性调整的情况进行说明。

此外,作为初始状态,外桩40位于基准旋转位置,通过外桩40而导致游丝主体31不会围绕第二轴线o2位移。

在这样的初始状态下,在进行等时性调整的情况下,由于通过例如使外桩环50相对于摆轮20而围绕第一轴线o1旋转,从而能够使外桩40与外桩环50一起沿周向方向移动,因而能够将游丝30的卷绕角θ设定为任意角度。由此,能够将卷绕角θ恰当地设定成限制于第一角度范围e1内或第二角度范围e2内。即,能够将卷绕角θ设定为属于第一角度范围e1内的+13度。

此外,不限定于上述的情况,也可以将外桩40预先固定于游丝主体31,使得例如卷绕角θ限制于第一角度范围e1内或第二角度范围e2内,即,卷绕角θ设定为属于第一角度范围e1内的+13度。

接下来,进行使卷绕角θ设定为+13度的外桩40围绕第二轴线o2旋转的旋转操作。由此,能够使等时性变化,能够进行等时性调整。

特别地,关于游丝主体31,在卷绕角θ限制于第一角度范围e1内的情况下,如前所述,由于旋转操作而变化的等时性变化量的情况比由于向径向方向的移动操作而变化的等时性变化量更大,因而与向径向方向的移动操作相比,旋转操作的情况能够使等时性以更好的敏感度变化。因此,在难以受到向径向方向的移动操作所造成的影响的状态下,能够使等时性以起因于旋转操作而导致的变化量变化,即使不利用快慢针,也能够定量地进行等时性调整,并且,能够容易且精度良好地进行等时性调整。

而且,由于卷绕角θ为+13度,因而如图14和图15中所示出的,关于游丝主体31,由于旋转操作而变化的等时性的最大变化量变得最大,与此相反,由于向径向方向的移动操作而变化的等时性的最大变化量变得最小。因此,等时性伴随着旋转操作而高敏感度地变化,但对于向径向方向的移动操作而变得不敏感,对于移动操作而变得难以变化。

因此,通过在卷绕角θ为+13度的状态下,进行外桩40的旋转操作,从而能够使等时性以起因于该操作而导致的变化量更有效地变化,能够进一步容易且精度良好地进行等时性调整。

特别地,由于外桩40的旋转操作而变化的等时性的变化量与旋转操作量大体上成比例。因此,能够使等时性以与外桩40的旋转操作对应的变化量变化,能够定量地进行等时性调整。

特别地,关于游丝主体31,由于在摆轮20的摆角为200度至250度的范围内成为极值的极性而导致等时性变化,因而当在摆角为200度至250度的范围内进行等时性调整时,即使是例如微小的旋转操作,也能够使等时性敏感度良好地有效地变化,易于容易地进行等时性调整。

如以上所说明的,依据具备本实施方式的游丝30的调速器13,即使不利用快慢针,也能够容易且精度良好地进行等时性调整。

特别地,与如现有技术那样利用镊子等来进行等时性调整的情况不同,在恰当地进行卷绕角θ的设定之后,不仅能够通过对外桩40进行旋转操作的一系列流程而顺利地进行等时性调整,而且能够使等时性定量地变化。因此,能够容易且恰当地进行等时性调整。

而且,依据本实施方式的机芯10和钟表1,由于具备上述调速器13,因而能够作为差率的误差少的高性能的机芯10和钟表1。

(第一实施方式的变形例)

在第一实施方式中,以卷绕角θ作为+13度,但不限定于此情况,只要属于第一角度范围e1内(即,(-125度±5度至-215度±5度)或(-35度±5度至+55度±5度)的范围内)即可。

其中尤其优选,卷绕角θ属于(-170度±α度)或(+10度±α度)的范围内,而且,α属于5度至30度的范围内。其中尤其,越是按以下次序设定,就越是变得更优选。

・卷绕角θ属于(-170度±30度)或(+10度±30度)的范围内。

・卷绕角θ属于(-170度±25度)或(+10度±25度)的范围内。

・卷绕角θ属于(-170度±20度)或(+10度±20度)的范围内。

・卷绕角θ属于(-170度±15度)或(+10度±15度)的范围内。

・卷绕角θ属于(-170度±10度)或(+10度±10度)的范围内。

・卷绕角θ属于(-170度±5度)或(+10度±5度)的范围内。

因此,最优选使卷绕角θ属于(-170度±5度)或(+10度±5度)的范围内。在此情况下,能够达到与第一实施方式同样的作用效果。

而且,在第一实施方式中,采用带有外端式游丝30,但也可以采用图6中所示出的不带外端型游丝80或图7中所示出的卷紧发条型游丝90。由于在这些情况下,也如前所述地具有与带有外端式游丝30同样的特性,因而能够达到与第一实施方式同样的作用效果。

例如,如图17至图19中所示出的,也可以作为具备卷紧发条型游丝90的调速器100。

关于此情况下的游丝90,游丝主体31中的最外周弹簧部32的一部分升起,在向与升起的起点部分在径向方向上相反的一侧延伸之后,固定(保持)于外桩40。另外,在图示的示例中,外桩40固定(保持)游丝90的外端部31b侧,使得卷绕角θ成为-167度。

在这样构成的调速器100的情况下,由于卷紧发条型游丝90具有与带有外端式游丝30同样的特性,而且,卷绕角θ为属于(-170度±5度)的范围内的-167度,因而也与第一实施方式同样地能够通过外桩40的旋转操作而容易且精度良好地进行等时性调整。

(第二实施方式)

接着,参照附图而对本发明所涉及的第二实施方式进行说明。此外,在该第二实施方式中,对与第一实施方式中的构成要素相同的部分标记相同的符号并省略其说明。

在第一实施方式中,外桩环50以能够围绕第二轴线o2旋转的方式支撑外桩40,但在第二实施方式中,外桩环50以能够沿径向方向移动的方式支撑外桩40。

如图20和图21中所示出的,本实施方式的调速器110配备有:外桩(本发明所涉及的第二部件)120,其固定(保持)游丝主体31的外端部31b侧;和外桩环(本发明所涉及的支撑部件)130,其以能够沿径向方向移动的方式支撑外桩120。

此外,在图20中,为了易于观察附图,省略调速器110的构成制品的一部分。

外桩环130与第一实施方式同样地配备有联接环51以及具有第一外桩臂53和第二外桩臂54的外桩臂52,能够相对于摆轮20而围绕第一轴线o1相对旋转。

第一外桩臂53和第二外桩臂54能够沿周向方向弹性变形,预先被施力,使得顶端部彼此接近。由此,能够将外桩120的轴体41夹持于第一外桩臂53与第二外桩臂54之间。

此外,在本实施方式的第一外桩臂53的第一夹持面53a和第二外桩臂54的第二夹持面54a,未形成第一实施方式中的弯曲面55。因此,第一夹持面53a和第二夹持面54a成为平坦面。

外桩120与第一实施方式同样地配备有轴体41、头部42、内侧脚部43以及外侧脚部44。但是,在轴体41,以沿周向方向相对的方式形成有:第一接触面41a,其相对于第一外桩臂53的第一夹持面53a而面接触;和第二接触面41b,其相对于第二外桩臂54的第二夹持面54a而面接触。

由此,在使第一夹持面53a相对于第一接触面41a而面接触且使第二夹持面54a相对于第二接触面41b而面接触的状态下,第一外桩臂53和第二外桩臂54夹持外桩120。由此,在旋转受限的状态下,外桩120以能够沿径向方向移动的方式被支撑于第一外桩臂53与第二外桩臂54之间。

此外,在使外桩120沿径向方向移动的情况下,在例如使调整工具卡合于头部42之后,能够使外桩120移动,以便抵抗第一外桩臂53与第二外桩臂54之间的夹持力。

而且,在本实施方式中,关于外桩环130,卷绕角θ为-77度而以能够移动的方式支撑外桩120。

(游丝的等时性调整)

接着,对利用如上所述地构成的本实施方式的调速器110来进行游丝30的等时性调整的情况进行说明。

此外,作为初始状态,外桩120位于基准位置,通过外桩120而导致游丝主体31不会沿径向方向位移。另外,通过与第一实施方式同样的方法而将卷绕角θ设定为属于第二角度范围e2内的-77度。

在这样的初始状态下,进行使卷绕角θ设定为-77度的外桩120沿径向方向移动的移动操作。由此,能够使等时性变化,能够进行等时性调整。

特别地,关于游丝主体31,在卷绕角θ限制于第二角度范围e2内的情况下,如前所述,由于向径向方向的移动操作而变化的等时性变化量的情况比由于旋转操作而变化的等时性变化量更大,因而与旋转操作相比,向径向方向的移动操作的情况能够使等时性以更好的敏感度变化。因此,在难以受到旋转操作所造成的影响的状态下,能够使等时性以起因于向径向方向的移动操作而导致的变化量变化。

而且,由于卷绕角θ为-77度,因而如图14和图15中所示出的,关于游丝主体31,由于向径向方向的移动操作而变化的等时性的最大变化量变得最大,与此相反,由于旋转操作而变化的等时性的最大变化量变得最小。因此,等时性伴随着移动操作而高敏感度地变化,但对于旋转操作而变得不敏感,对于旋转操作而变得难以变化。

因此,在卷绕角θ为-77度的状态下,通过进行移动操作,从而能够使等时性以起因于该操作而导致的变化量更有效地变化,能够进一步容易且精度良好地进行等时性调整。

特别地,与第一实施方式中的旋转操作的情况同样地,由于外桩40的移动操作而变化的等时性的变化量与移动操作量大体上成比例。因此,能够使等时性以与外桩40的移动操作对应的变化量变化,能够定量地进行等时性调整。

由于以上的情况,因而在本实施方式的情况下,即使不利用快慢针,也能够定量地进行等时性调整,并且,能够容易且精度良好地进行等时性调整。

特别地,关于游丝主体31,由于在摆轮20的摆角为200度至250度的范围内成为极值的极性而导致等时性变化,因而当在摆角为200度至250度的范围内进行等时性调整时,即使是例如微小的移动操作,也能够使等时性敏感度良好地有效地变化,易于容易地进行等时性调整。

如以上所说明的,即使是具备本实施方式的游丝30的调速器110,也能够不利用快慢针就容易且精度良好地进行等时性调整。

(第二实施方式的变形例)

在第二实施方式中,以卷绕角θ作为-77度,但不限定于此情况,只要属于第二角度范围e2内(即,(-125度±5度至-35度±5度)或(+55度±5度至+145度±5度)的范围内)即可。

其中尤其优选,卷绕角θ属于(-80度±α度)或(+100度±α度)的范围内,而且,α属于5度至30度的范围内。其中尤其越是按以下次序设定,就越是变得更优选。

・卷绕角θ属于(-80度±30度)或(+100度±30度)的范围内。

・卷绕角θ属于(-80度±25度)或(+100度±25度)的范围内。

・卷绕角θ属于(-80度±20度)或(+100度±20度)的范围内。

・卷绕角θ属于(-80度±15度)或(+100度±15度)的范围内。

・卷绕角θ属于(-80度±10度)或(+100度±10度)的范围内。

・卷绕角θ属于(-80度±5度)或(+100度±5度)的范围内。

因此,最优选使卷绕角θ属于(-80度±5度)或(+100度±5度)的范围内。在此情况下,能够达到与第二实施方式同样的作用效果。

而且,在第二实施方式中,也可以采用图6中所示出的不带外端型游丝80或图7中所示出的卷紧发条型游丝90。由于在这些情况下,也如前所述地具有与带有外端式游丝30同样的特性,因而能够达到与第二实施方式同样的作用效果。

(第三实施方式)

接着,参照附图而对本发明所涉及的第三实施方式进行说明。此外,在该第三实施方式中,对与第二实施方式中的构成要素相同的部分标记相同的符号并省略其说明。

在第二实施方式中,利用第一外桩臂53和第二外桩臂54来以能够沿径向方向移动的方式支撑外桩120,但在第三实施方式中,利用外桩按压件来以能够移动的方式支撑外桩。

如图22中所示出的,本实施方式的调速器140配备有:外桩(本发明所涉及的第二部件)150,其固定(保持)游丝主体31的外端部31b侧;外桩环(本发明所涉及的支撑部件)160,其以能够沿径向方向移动的方式支撑外桩150;以及外桩按压件170,其相对于外桩环160而组合。

此外,在图22中,为了易于观察附图,省略调速器140的构成制品的一部分。

如图22和图23中所示出的,外桩环160配备有:联接环51;第一臂部161,其从联接环51向径向方向外侧延伸;以及第二臂部162,其与第一臂部161一体地形成,沿周向方向延伸。

第二臂部162与第一臂部161的顶端部(外端部)一体地形成,以沿周向方向延伸的在俯视时呈现的椭圆状或在俯视时呈现的圆弧状形成。在本实施方式中,第二臂部162中的周向方向的中央部分连接至第一臂部161的顶端部。

在第二臂部162中的位于周向方向的中央的部分,形成有狭缝状的第一引导槽163,第一引导槽163上下贯通该第二臂部162,并且,向径向方向外侧开口。第一引导槽163以沿着径向方向延伸的直线状形成。

在第二臂部162中的夹着第一引导槽163而位于周向方向的两侧的周端部,分别形成有上下延伸的螺纹孔164。

外桩150配备有:圆柱状的轴体41,其沿着第二轴线o2伸长;凸缘部151,其比轴体41的上端部更位于下方,并且,与轴体41一体地形成,而且,与轴体41相比而直径扩大;以及内侧脚部43和外侧脚部44,其从轴体41的下端部向下方突出。此外,在图22和图23中,内侧脚部43和外侧脚部44被外桩环160遮挡。

轴体41以外径比第一引导槽163的槽宽更小的圆柱状形成。凸缘部151以外径比第一引导槽163的槽宽更大的在俯视时呈现的圆形状形成。由此,外桩150以凸缘部151与第二臂部162重叠的状态以能够沿径向方向移动的方式配置于第一引导槽163内。

如图22和图24中所示出的,外桩按压件170成为与第二臂部162的形状对应地沿周向方向延伸的板,以与第二臂部162的上表面重叠的方式配置。此外,关于外桩按压件170,其外径与第二臂部162的外形对应地形成,使得外桩按压件170覆盖第二臂部162的大约整面。

在外桩按压件170中的位于周向方向的中央的部分,形成有狭缝状的第二引导槽171,第二引导槽171上下贯通该外桩按压件170,并且,沿着径向方向延伸。第二引导槽171成为与第一引导槽163同等的槽宽,并且,配置于第一引导槽163的上方。外桩150中的轴体41的上端部插入贯通于该第二引导槽171内。

在外桩按压件170的下表面,在位于周向方向的中央的部分,形成有沿着径向方向延伸的凹槽172。凹槽172的宽度比外桩150的凸缘部151的直径更大地形成。由此,在将凸缘部151容纳于凹槽172内的状态下,外桩按压件170能够与第二臂部162的上表面重叠。但是,凹槽172的深度比凸缘部151的厚度略浅地形成。由此,在将凸缘部151推压于第二臂部162的状态下,外桩按压件170与第二臂部162的上表面重叠。

而且,在外桩按压件170中的夹着第二引导槽171而位于周向方向的两侧的周端部,形成有用于固定螺丝173的安装孔175。外桩按压件170通过安装孔175而将固定螺丝173安装于螺纹孔164,由此,在将凸缘部151夹入与第二臂部162之间的状态下,相对于第二臂部162而一体地组合。

(游丝的等时性调整)

依据如上所述地构成的本实施方式的调速器140,由于能够使外桩150沿径向方向移动,因而能够达到与第二实施方式同样的作用效果。

此外,在本实施方式的情况下,由于通过将固定螺丝173松开或拆卸,从而能够解除凸缘部151的夹入,因而能够使外桩150沿着第一引导槽163和第二引导槽171沿径向方向移动。然后,在进行移动操作之后,通过将固定螺丝173拧紧,从而能够将凸缘部151夹入第二臂部162与外桩按压件170之间,因而能够将外桩150更稳定地固定于移动操作后的位置处。

因此,能够有效地抑制外桩150的位置例如意外地沿径向方向移动而发生位置偏离。

以上,对本发明的实施方式进行了说明,但这些实施方式是作为示例而提出的实施方式,不旨在限定发明范围。实施方式能够以其它各种各样的方式实施,在不脱离发明主旨的范围内,能够进行各种省略、置换、变更。在实施方式或其变形例中,包含例如本领域技术人员能够容易地设想的示例、实质上相同的示例、均等范围的示例等。

例如,在上述各实施方式中,举例说明了将游丝主体的内端部侧固定于摆轮的摆轴的情况,但不限定于此情况。例如,也可以作为将游丝主体的内端部侧固定于围绕轴线旋转的第一零件(即,除了摆轮以外的用于钟表的零件)的构成。

符号说明

θ卷绕角

e1第一角度范围

e2第二角度范围

l1第一假想线

l2第二假想线

o1第一轴线(摆轮的轴线)

p1退绕位置

p2保持位置

1钟表

10机芯(用于钟表的机芯)

13、100、110、140调速器

20摆轮(第一部件)

21摆轴

30、80、90游丝

31游丝主体

31a游丝主体的内端部

31b游丝主体的外端部

40、120、150外桩(第二部件)

50、130、160外桩环(支撑部件)。

技术特征:

1.一种游丝,配备有游丝主体,其内端部侧固定于围绕轴线旋转的第一部件,而且,外端部侧保持于第二部件,并且,在从所述内端部至所述外端部之间,在与所述轴线交叉的面内按既定圈数以漩涡状形成,

当以从所述轴线方向观察、而在使所述游丝主体的退绕位置和所述轴线连结的第一假想线与使保持于所述第二部件的所述游丝主体的保持位置和所述轴线连结的第二假想线之间形成的围绕所述轴线的角度作为卷绕角时,

所述游丝主体在所述卷绕角限制于预定的第一角度范围内的状态下,所述外端部侧以在所述面内旋转的方式由所述第二部件保持,或在限制于预定的第二角度范围内的状态下,所述外端部侧以沿所述游丝主体的径向方向移动的方式由所述第二部件保持,

所述游丝主体进一步在所述卷绕角限制于所述第一角度范围内时,由于在所述面内的旋转而变化的等时性变化量的情况比由于向所述径向方向的移动而变化的等时性变化量更大,而且在所述卷绕角限制于所述第二角度范围内时,由于向所述径向方向的移动而变化的等时性变化量的情况比由于在所述面内的旋转而变化的等时性变化量更大。

2.根据权利要求1所述的游丝,其特征在于,

以当所述卷绕角为零时为基准,当以所述第二部件前进至所述游丝主体的缠绕方向侧的方向作为所述卷绕角的正方向,以其相反方向作为所述卷绕角的负方向时,

所述第一角度范围成为所述卷绕角被包含在(-125度±5度至-215度±5度)、或(-35度±5度至+55度±5度)的范围内的角度范围,

所述第二角度范围成为所述卷绕角被包含在(-125度±5度至-35度±5度)、或(+55度±5度至+145度±5度)的范围内的角度范围。

3.根据权利要求2所述的游丝,其特征在于,

所述第一角度范围成为所述卷绕角被包含在(-170度±α度)、或(+10度±α度)的范围内的角度范围,

所述第二角度范围成为所述卷绕角被包含在(-80度±α度)、或(+100度±α度)的范围内的角度范围,

所述α是被包含在5度至30度的范围内的角度。

4.根据权利要求3所述的游丝,其特征在于,

所述第一角度范围成为所述卷绕角被包含在(-170度±5度)、或(+10度±5度)的范围内的角度范围,

所述第二角度范围成为所述卷绕角被包含在(-80度±5度)、或(+100度±5度)的范围内的角度范围。

5.根据权利要求1至4中的任一项所述的游丝,其特征在于,

所述第一部件成为摆轮,

所述游丝主体的所述内端部固定于所述摆轮中的摆轴。

6.根据权利要求5所述的游丝,其特征在于,

关于所述游丝主体,所述外端部侧在所述面内旋转,或所述外端部侧沿所述摆轴的径向方向移动,由此,以在所述摆轮的摆角为200度至250度的范围内包含极值的曲线等时性变化。

7.一种调速器,配备有:

根据权利要求5或6所述的游丝;

所述摆轮;

所述第二部件;以及

支撑部件,其以能够相对于所述摆轮而围绕所述轴线相对旋转的方式组合,并且,以能够移动的方式支撑所述第二部件,

所述支撑部件以能够在所述面内旋转的方式支撑所述第二部件,或以能够沿所述摆轴的径向方向移动的方式支撑所述第二部件。

8.一种用于钟表的机芯,配备有根据权利要求7所述的调速器。

9.一种钟表,配备有根据权利要求8所述的用于钟表的机芯。

技术总结

本发明即使不利用快慢针,也容易且精度良好地进行等时性调整。本发明提供一种游丝(30),该游丝(30)配备有游丝主体(31),其内端部(31a)侧固定于第一部件(20),而且,外端部(31b)侧保持于第二部件(40),游丝主体在卷绕角(θ)限制于第一角度范围内的状态下,以外端部侧在面内旋转的方式由第二部件保持,或在限制于第二角度范围内的状态下,以外端部侧沿径向方向移动的方式由第二部件保持,游丝主体在卷绕角限制于第一角度范围内时,由于在面内的旋转而变化的等时性变化量的情况比由于向径向方向的移动而变化的等时性变化量更大,而且,在卷绕角限制于第二角度范围内时,由于向径向方向的移动而变化的等时性变化量的情况比由于在面内的旋转而变化的等时性变化量更大。

技术研发人员:藤枝久;原洋介

受保护的技术使用者:精工电子有限公司

技术研发日:.06.28

技术公布日:.01.07

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。